
J
H
E
P
0
8
(
2
0
0
7
)
0
3
6

Published by Institute of Physics Publishing for SISSA

Received: June 29, 2007

Accepted: July 23, 2007

Published: August 9, 2007

Domain-wall/cosmology correspondence in AdS/dS

supergravity

Kostas Skenderis,a Paul K. Townsendb and Antoine Van Proeyenc

aInstitute for Theoretical Physics, University of Amsterdam,

Valckenierstraat 65, 1018 XE Amsterdam, The Netherlands
bDepartment of Applied Mathematics and Theoretical Physics,

Centre for Mathematical Sciences, University of Cambridge,

Wilberforce Road, Cambridge, CB3 0WA, U.K.
cInstituut voor Theoretische Fysica, Katholieke Universiteit Leuven,

Celestijnenlaan 200D, B-3001 Leuven, Belgium

E-mail: skenderi@science.uva.nl, p.k.townsend@damtp.cam.ac.uk,

antoine.vanproeyen@fys.kuleuven.be

Abstract: We realize the domain-wall/cosmology correspondence for

(pseudo)supersymmetric domain walls (cosmologies) in the context of four-dimensional

supergravity. The OSp(2|4)-invariant anti-de Sitter (adS) vacuum of a particular N = 2

Maxwell-Einstein supergravity theory is shown to correspond to the OSp(2∗|2, 2)-invariant

de Sitter (dS) vacuum of a particular pseudo-supergravity model, with ‘twisted’ reality

conditions on spinors. More generally, supersymmetric domain walls of the former

model correspond to pseudo-supersymmetric cosmologies of the latter model, with

time-dependent pseudo-Killing spinors that we give explicitly.

Keywords: dS vacua in string theory, Supergravity Models, Supersymmetry and

Duality, Gauge-gravity correspondence.

c© SISSA 2007 http://jhep.sissa.it/archive/papers/jhep082007036/jhep082007036.pdf

mailto:skenderi@science.uva.nl
mailto:p.k.townsend@damtp.cam.ac.uk
mailto:antoine.vanproeyen@fys.kuleuven.be
http://jhep.sissa.it/stdsearch
http://jhep.sissa.it/stdsearch


J
H
E
P
0
8
(
2
0
0
7
)
0
3
6

Contents

1. Introduction 1

2. N = 2 gauged (pseudo)supergravity 3

2.1 N = 2 supergravity with one vector multiplet 4

2.2 Kähler-gauge invariant formulation 6

2.3 The model 6

2.4 Reality conditions 8

2.5 Relation to fake (pseudo)supergravity 10

3. Domain-wall/cosmology correspondence 11

3.1 Domain walls 12

3.2 Cosmologies 13

4. Discussion 14

1. Introduction

A scalar field minimally coupled to gravity is said to define a ‘fake supergravity’ theory [1]

if the scalar potential V is given in terms of a triplet superpotential W by a certain

‘supergravity-inspired’ formula (see [2, 3] for related earlier work, and [4 – 7] for recent dis-

cussion of the multi-scalar, and other, generalizations). A domain-wall solution supported

by the scalar field is then said to be (fake) supersymmetric if it admits a ‘Killing spinor’,

defined as a non-zero solution for the complex doublet spinor field χ of the ‘Killing spinor’

equation

(Dµ + W · τ Γµ) χ = 0 , (µ = 0, 1, . . . ,D − 1) , (1.1)

where Dµ is the standard covariant derivative acting on Lorentz spinors, Γµ are Dirac

matrices and τ is a triplet of Pauli matrices. Remarkably, all domain walls that are either

flat or ‘adS-sliced’ (foliated by anti-de Sitter spacetimes) are (fake) supersymmetric if the

scalar field is strictly monotonic, because under these circumstances the required triplet

superpotential can be constructed from the solution itself [1, 8 – 10]. The superpotential

so constructed turns out to be real, and it takes the form gW for a flat wall, where g is a

fixed 3-vector and W a real scalar superpotential.

It was shown in [9, 11] that similar results apply to flat and closed homogeneous

and isotropic (Friedmann, Lemaitre, Robertson and Walker, or FLRW) cosmologies, de-

spite their time-dependence. This result was found by an application of a ‘domain-

wall/cosmology (DW/C) correspondence’, which states that for every maximally symmetric

domain-wall solution of gravity coupled to scalar fields of a model with potential V there
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is a corresponding homogeneous and isotropic cosmology of the same model but with po-

tential −V [9, 12]. If the domain wall is adS-sliced then the corresponding cosmology is

closed, and if the domain wall is flat then so is the corresponding cosmology. In either case,

a domain-wall solution that is fake supersymmetric with respect to a (real) superpotential

W corresponds to a cosmology that is fake supersymmetric with respect to the imagi-

nary superpotential iW. The corresponding solution of (1.1) was called a “pseudo-Killing”

spinor in [9, 11] because the ‘gamma-trace’ of this equation is a Dirac-type equation but

with an anti-hermitian ‘mass’ matrix. In this paper we will need only the special case of

this result for flat domain walls and the corresponding flat cosmologies. Each fake super-

symmetric flat domain wall is paired with a fake supersymmetric flat cosmology, and this

pair is associated with some real scalar superpotential W such that there exist non-zero

solutions χ of the equation

(Dµ + W g · τ Γµ)χ = 0 , (1.2)

for some fixed 3-vector g that is real for the domain wall and imaginary for the cosmology.

Just as some fake supersymmetric domain-wall solutions of a fake supergravity theory

may also be ‘genuinely’ supersymmetric solutions of ‘genuine’ supergravity theory (for a

restricted set of possible spacetime dimensions D), one might expect some ‘fake’ pseudo-

supersymmetric cosmological solutions to be ‘genuinely’ pseudo-supersymmetric solutions

of some ‘genuine’ supergravity theory. However, Killing spinors arising in supergravity

theories are generally subject to some reality (and/or chirality) condition. For example,

for D = 5 the Killing spinor equation (1.1) can be deduced from the condition of vanishing

supersymmetry variation of the gravitino field of D = 5 supergravity coupled to matter [4],

and in this context the spinor χ is subject to a symplectic-Majorana condition that requires

W to be real. Similar considerations apply in other dimensions and are expected to lead to

the same conclusion (although the precise relation of the ‘fake’ Killing spinor equation (1.1)

to the supergravity supersymmetry preservation conditions is known in only a few cases).

However, there exist ‘non-standard’ supergravity theories that are found by imposing

‘twisted reality’ conditions on spinors; we shall call them pseudo-supergravity theories.

They first arose from an investigation of whether there could be supergravity theories

with supersymmetric de Sitter (dS) vacua. The dS supergroups available as isometry

supergroups were classified by Nahm [13] and are listed in table 1, along with the R-

symmetry group.

Applications for D = 4, 5, 6 have been discussed in [14 – 18]; in particular, an explicit

N = 2, D = 4 ‘de Sitter’ pseudo-supergravity was constructed in [15, 17]. Just as adS space

can be viewed as a special case of a domain wall, so dS space can be viewed as a special

case of an FLRW cosmology. This suggests that it should be possible to view pseudo-

supergravity theories with supersymmetric dS vacua as ‘duals’ of ‘standard’ supergravity

theories with supersymmetric adS vacua, such that these two vacua are ‘dual’ in the sense

of the DW/C correspondence. One purpose of this paper is to confirm this logic for a

particular N = 2, D = 4, U(1)-gauged Maxwell-Einstein pseudo-supergravity theory that

we show to be ‘dual’ in the sense just described to a ‘standard’ N = 2, D = 4 Maxwell-

Einstein supergravity.
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supergroup R-symmetry

D = 6 F1(4) SU(2)

D = 5 SU∗(4|2n) n = 1 SO(1, 1) × SU(2)

n = 2 SO(5, 1)

D = 4 OSp(N∗|2, 2) N = 2 SO(2)

N = 4 SU(1, 1) × SU(2)

N = 6 SU(3, 1)

N = 8 SO(6, 2)

Table 1: De Sitter supergroups in D ≥ 4 whose bosonic subgroup is SO(D, 1) × R.

A further purpose of this paper is to extend this result to generic

(pseudo)supersymmetric domain walls (cosmologies) of these ‘dual’ theories, although we

shall limit ourselves here to solutions that are asymptotic to the adS (dS) vacuum. In

either case the (pseudo)supersymmetry is shown to be a consequence of the existence of a

non-zero solution for χ of (1.2) with g = (g, 0, 0), where g is the gauge coupling constant.

While the standard reality conditions on χ imply that g is real, the twisted reality

conditions imply that it is imaginary, exactly as required for pseudo-supersymmetry.

When g is imaginary, reality of the action requires the U(1) gauge field to be imaginary

too. This means that the kinetic term for a redefined, real, gauge field is negative, so the

pseudo-supergravity has vector ghosts [15, 17]; this is a manifestation of the fact that

there is no non-trivial representation of a dS superalgebra in a positive definite Hilbert

space.

This paper is organized as follows. In the next section we recall the essentials of N = 2,

D = 4 supergravity and the different reality conditions that one may impose on the spinors.

In particular, for a choice of gauging we show that standard reality conditions lead to a

supersymmetric adS critical point while twisted reality conditions to a supersymmetric

dS critical point. We further relate this to fake supergravity. In section 3 we realize

the domain-wall/cosmology correspondence in supergravity by finding the corresponding

supersymmetric domain-wall/cosmology solutions. Section 4 contains our conclusions and

further discusses some implications.

We became aware of related work on a realization of the DW/C correspondence in

D = 10 and D = 11 supergravity [19] during the completion of an earlier version of this

paper. This revision presents the precise relation of our supergravity results to the fake

supergravity formalism in which context the correspondence was originally proposed.

2. N = 2 gauged (pseudo)supergravity

In this section we review the features of D = 4, N = 2 Einstein-Maxwell supergravity

theory [20] relevant for our application, in particular the choices of reality conditions on

spinors, and we also show how the (pseudo)Killing spinor equation (1.2) arises in this

context. For one vector multiplet, the bosonic fields are the metric Gµν , two vectors

AI
µ (I=0, 1), (with A0

µ being the graviphoton) and a complex scalar z; the fermionic fields
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are the two gravitini ψi
µ and the two photini λi, (i = 1, 2). A linear combination gIA

I
µ of

the two vector fields may be used to gauge a U(1) group. We will consider a model with

an SO(1, 1)-invariant metric on the space of coupling vectors gI , leading to three types of

gauging according to whether this vector is ‘timelike’, ‘spacelike’ or ‘null’. For the most

part we follow the notations and conventions in [21].

2.1 N = 2 supergravity with one vector multiplet

As we are interested in domain-wall/cosmology solutions that involve only the metric and

the scalar fields, we truncate the supergravity theory to this sector. The truncated La-

grangian density L is given by

e−1L =
1

2
R − gzz̄DµzDµz̄ − V (z, z̄) , (2.1)

where e =
√
− det G, and gzz̄ is the Kähler target space metric, given in terms of a Kähler

potential K by

gzz̄ = ∂z∂z̄K . (2.2)

The relations of special geometry imply that

e−K = −i

(

ZI ∂F̄

∂Z̄I
− Z̄I ∂F

∂ZI

)

, (2.3)

where ZI(z) (I = 0, 1) are two holomorphic functions of z, and F (Z) is a holomorphic

function of these two variables, homogeneous of second degree. Due to the homogeneity,

one of the variables ZI is irrelevant, so one can take an arbitrary parametrization (up to

some requirements of non-degeneracy) of the ZI in terms of z.

The form of the potential V is determined, via a Ward identity, from the supersymme-

try transformations rules of the gravitini and photini [22 – 24], so we consider these first.

We take the spinor parameters to be ǫi (i = 1, 2) and we work with chiral spinors, i.e.

eigenspinors of γ5 ≡ iγ0γ1γ2γ3, with the position of the index indicating chirality:

ǫi = +γ5ǫ
i , ψµ

i = +γ5ψµ
i , λi = −γ5λ

i ,

ǫi = −γ5ǫi , ψµi = −γ5ψµi , λi = +γ5λi . (2.4)

After truncation to the metric-scalar sector, the fermion field supersymmetry transforma-

tion laws are

δψµi =

(

Dµ − 1

2
iAµ

)

ǫi − γµSijǫ
j , δλi = /∂z̄ǫi + N z̄ ijǫj ,

δψi
µ =

(

Dµ +
1

2
iAµ

)

ǫi − γµSijǫj , δλi = /∂zǫi + N z
ijǫ

j , (2.5)

where Dµ is the usual Lorentz-covariant derivative on spinors, and

Aµ = −1

2
i (∂µz ∂zK − ∂µz̄ ∂z̄K) (2.6)
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is the Kähler connection. The auxiliary fields are given by

Sij = −PIij eK/2Z̄I , N z̄ ij = −2eK/2P ij
I gzz̄DzZ

I ,

Sij = −P ij
I eK/2ZI , N z

ij = −2eK/2PIij gzz̄ DzZI , (2.7)

where gzz̄ = (gzz̄)
−1, and

DzZ
I = ∂zZ

I + ZI∂zK (2.8)

is the Kähler-covariant derivative of ZI . One also has

P ij
I = εikεjℓPIkℓ , (2.9)

where PIij (the moment map) will be specified below. We use conventions for which

εijεkj = δi
k and ε12 = ε12 = 1. As mentioned, the scalar potential follows directly from the

transformation laws, and is given by

V = −6SijSij +
1

2
gzz̄N

z
ijN

z̄ij . (2.10)

In the absence of physical hypermultiplets, PIij are the entries of two constant symmet-

ric matrices PI , and an ‘equivariance condition’ requires these matrices to be proportional,

so

PIij = gIeij , (2.11)

for constants gI (which are the components of the coupling constant vector mentioned

earlier) and constant symmetric matrix eij . Introducing a triplet of Pauli matrices τ , we

may write

eij = [τ2 (n · τ)]ij , (2.12)

for 3-vector n = (n1, n2, n3), which is complex, a priori, but will be restricted by reality

conditions to be discussed below. The supersymmetry transformations (2.5) may now be

written as

δψµi =

(

Dµ − 1

2
iAµ

)

ǫi + eK/2Z̄γµ [τ2 (n · τ )]ij ǫj ,

δψi
µ =

(

Dµ +
1

2
iAµ

)

ǫi + eK/2Zγµ [(n · τ ) τ2]
ij ǫj ,

δλi = /∂z̄ ǫi − 2eK/2gzz̄ DzZ [(n · τ ) τ2]
ij ǫj ,

δλi = /∂z ǫi − 2eK/2gzz̄ DzZ [τ2 (n · τ )]ij ǫj , (2.13)

where

Z = gIZ
I , DzZ = ∂zZ + Z∂zK ,

Z̄ = gI Z̄
I , DzZ = ∂z̄Z̄ + Z̄∂z̄K . (2.14)

The potential may similarly be written as

V = 4 (n · n) eK
[

gzz̄DzZ DzZ − 3ZZ̄
]

. (2.15)
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2.2 Kähler-gauge invariant formulation

This potential (2.15) is invariant under the Kähler gauge transformations

K → K−
(

f + f̄
)

, ZI → efZI , Z̄I → ef̄ Z̄I , (2.16)

which induces the transformations

Aµ → Aµ +
1

2
i∂µ

(

f − f̄
)

, Z → efZ , Z̄ → ef̄ Z̄ . (2.17)

This suggests that we introduce the new, gauge-equivalent, Kähler potential

K̃ = K + log
(

ZZ̄
)

, (2.18)

and its associated, gauge-equivalent, Kähler connection,

Ãµ = Aµ − 1

2
i∂µ log

(

Z/Z̄
)

. (2.19)

In terms of the function

W = eK̃/2 , (2.20)

the scalar potential takes the manifestly Kähler-gauge invariant form [25]

V = 16 (n · n)

[

gzz̄∂zW ∂z̄W − 3

4
W 2

]

. (2.21)

The supersymmetry transformation laws may be similarly written in Kähler-gauge invariant

form by introducing the new spinor parameters

ǫ̃i =
(

Z/Z̄
)

1

4 ǫi , ǫ̃i =
(

Z̄/Z
)

1

4 ǫi . (2.22)

One then finds that

(

Z/Z̄
)

1

4 δψµi =

(

Dµ − 1

2
iÃµ

)

ǫ̃i + Wγµ [τ2 (n · τ )]ij ǫ̃j ,

(

Z̄/Z
)

1

4 δψi
µ =

(

Dµ +
1

2
iÃµ

)

ǫ̃i + Wγµ [(n · τ ) τ2]
ij ǫ̃j ,

(

Z̄/Z
)

1

4 δλi = /∂z̄ ǫ̃i − 4gzz̄∂zW [(n · τ ) τ2]
ij ǫ̃j ,

(

Z/Z̄
)

1

4 δλi = /∂z ǫ̃i − 4gzz̄∂z̄W [τ2 (n · τ )]ij ǫ̃j . (2.23)

2.3 The model

We will choose the prepotential

F (Z) =
i

4
(−Z0Z0 + Z1Z1) , (2.24)

which yields

e−K(z,z̄) = Z0Z̄0 − Z1Z̄1 . (2.25)

– 6 –
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Because of the homogeneity of F , we may choose Z0 = 1, and we may then choose a

parametrization such that Z1 = z. Thus, without loss of generality we may choose

ZI = (1, z) . (2.26)

This yields

K(z, z̄) = − log (1 − zz̄) , Z = g0 + g1z , (2.27)

and hence

gzz̄ = (1 − zz̄)−2 , Aµ = −1

2
i (1 − zz̄)−1 [z̄∂µz − z∂µz̄] , (2.28)

and

W 2 =
(g0 + g1z) (g0 + g1z̄)

1 − zz̄
. (2.29)

The values of the complex scalar field z must be restricted to the unit disc zz̄ < 1, and the

metric is then the SU(1, 1)-invariant hyperbolic metric on this disc. From the formula (2.21)

we find that

V =
4 (n · n)

1 − zz̄

[

g2
0 (zz̄ − 3) − 2g0g1 (z + z̄) + g2

1 (1 − 3zz̄)
]

. (2.30)

When g0 = g1 there is no extremum of V within the unit disc, zz̄ < 1. Otherwise there is

an extremum, which is at z = 0 for the two special cases in which either g0 = 0 or g1 = 0.

As we will see in the section to follow, standard reality conditions imply that n is a

real 3-vector, in which case V > 0 when g0 = 0 (but g1 6= 0), and the minimum of V at

z = 0 is a supersymmetry breaking dS vacuum. In contrast, V < 0 when g1 = 0 (but

g0 6= 0), and the maximum at z = 0 is a supersymmetric adS vacuum. This is the case

that we will focus on in this paper. For our purposes, it will suffice to consider gI = (1, 0),

so that

Z = 1 , W = 1/
√

1 − zz̄ . (2.31)

The scalar potential for this model is

V = 4 (n · n)

[

zz̄ − 3

1 − zz̄

]

. (2.32)

For n a real 3-vector, this is precisely the potential of the SO(4) gauged N = 4 supergravity,

which has an identical scalar field content. It follows that we are considering an N = 2

truncation of this N = 4 model, and hence of SO(8) gauged N = 8 supergravity, as also

follows from results of [26] on the U(1)4 truncation of the N = 8 theory1. As the N = 8

theory is a consistent truncation of the S7-compactification of D = 11 supergravity, any

domain-wall solution of our model, such as the one found later, can be lifted to D = 11,

using e.g. the results of [27, 28].

Our next task is to consider the implications for this model of ‘twisted’ reality condi-

tions on the fermion fields.

1This involves keeping only the 35 scalars parametrizing S ℓ(8; R)/SO(8), as a first step, then using

the local SO(8) invariance to diagonalize the S ℓ(8; R) matrix, and retaining only the 8 diagonal entries

Xα (α = 1, . . . , 8), as a second step. The potential depends only on the 7 scalars parametrizing the

subspace defined by
Q

α Xα = 1, and a further truncation obtained by choosing the particular solution

X1 = X2 = X3 = X4 = X and X5 = X6 = X7 = X8 = X−1 yields our model with X = eσ/2.

– 7 –
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2.4 Reality conditions

We use conventions for which the charge conjugation matrix is γ0, so that all Dirac matrices

γµ are real and γ5 = iγ0γ1γ2γ3 is imaginary. This implies that complex conjugation changes

the chirality of the spinors. In our conventions, complex conjugation does not change

the order of spinors, so (λχ)∗ = λ∗χ∗. Although chiral spinors are necessarily complex,

each component of a chiral spinor must be linearly related to the complex conjugate of

the corresponding anti-chiral spinor in order that each spinor has 4 independent complex

components as required by N = 2 supersymmetry. In other words, we require a ‘reality

condition’ of the form [15, 17, 29]

ǫi = M i
j (ǫj)

∗ , (2.33)

and similarly for other spinors, where M i
j are the entries of an invertible matrix M that

must be hermitian for reality of the action. In particular, the redefined spinor parameters

ǫ̃i and ǫ̃i introduced in (2.22) will satisfy exactly the same reality condition as the spinors

ǫi and ǫi. By a redefinition of the spinors one can send

M → S†M S , (2.34)

where S is any invertible matrix, and one may choose S so as to bring M to one of two

standard forms: M = 1 or M = m · τ for some real unit 3-vector m. The choice M = 1

leads to standard N = 2 supergravity while the choice M = m · τ (e.g. M = τ3) leads to

N = 2 pseudo-supergravity. In the former case the spinors are SU(2) doublets and in the

latter case they are SU(1, 1) doublets.

Consistency of the ‘reality condition’ (2.33) with the fermionic field supersymmetry

variations of (2.13) requires (for gI real; we henceforth restrict to g0 = 1 and g1 = 0)

(n · τ) τ2 = M (n∗ · τ) τ2M
∗ . (2.35)

The fermion field variations of (2.23) may now be written, suppressing SU(2) or SU(1, 1)

indices, in terms of a complex chiral doublet photino field λ and a complex anti-chiral

doublet gravitino field ψµ. Recalling that Z = 1 for the model of interest here, we have

δψµ =

(

Dµ − 1

2
iAµ

)

ǫ + Wγµτ2 (τ · n)Mǫ∗ ,

δλ = /∂z ǫ − 4gzz̄∂z̄W τ2 (n · τ ) Mǫ∗ , (2.36)

where ǫ is a complex anti-chiral doublet spinor parameter.

The consistency condition (2.35) should be viewed as a reality condition on the 3-

vector n. For M = 1 it implies that n is real, whereas for M = m · τ , it implies that

the components of n perpendicular to m are real but the component (anti)parallel to m is

imaginary. In either case we may write

n = g m + n⊥ , n⊥ · m = 0 , n⊥, m ∈ R
3 , (2.37)

– 8 –
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Supergravity n ⊥ m n ‖ m

Normal adS× SO(2)

M = 1 OSp(2|4)
Pseudo adS× SO(1, 1) dS× SO(2)

M = m · τ OSp(1, 1|4) OSp(2∗|2, 2)

Table 2: (Pseudo)supersymmetric (a)dS vacua for D = 4, N = 2 supergravity minimally coupled

to one vector multiplet.

where g is real2 for M = 1 (in which case m should be interpreted as an arbitrary unit

3-vector) but imaginary [17] for M = m · τ . In the former case we have V < 0 and the

potential has a supersymmetric adS maximum at z = 0. In the latter case, the potential

may be positive, negative or zero, depending on the relative magnitudes of g and n⊥. In

particular, when g = 0, but n⊥ 6= 0, we again have V < 0 with a supersymmetric adS

vacuum at z = 0, but the isometry supergroup is OSp(1, 1|4) rather than OSp(2|4). When

n⊥ = 0 but g 6= 0 we have V > 0 and what was the supersymmetric adS vacuum is

now a supersymmetric dS vacuum, with isometry supergroup OSp(2∗|2, 2). The various

possible supersymmetric (a)dS vacua, along with their isometry supergroups (and bosonic

subgroups) are shown in table 2.

Henceforth, we make the standard choice for twisted reality conditions: M = τ3,

corresponding to m = (0, 0, 1). We will also choose

n = g m = g (0, 0, 1) . (2.38)

This implies no loss of generality when M = 1 but amounts to the choice n⊥ = 0 for

twisted reality conditions. In either case the potential (2.32) becomes

V = −4g2

[

3 − |z|2
1 − |z|2

]

, (2.39)

but g is real for M = 1 and imaginary for M = τ3.

Our interest in the supersymmetry transformation laws is primarily due to the fact

that one gets the conditions for preservation of supersymmetry, in a bosonic background,

by setting to zero the supersymmetry variations of the fermion fields. So, for simplicity, we

now set δψµ and δλ to zero in (2.36) to arrive at the supersymmetry preservation conditions

0 =

(

Dµ − 1

2
iAµ

)

ǫ + ig Wγµτ1Mǫ∗ ,

0 = /∂z ǫ − 4ig gzz̄∂z̄Wτ1Mǫ∗ , (2.40)

where W = 1/
√

1 − |z|2 and either M = 1 or M = τ3, with g real for M = 1 and imaginary

for M = τ3.

2This is the coupling constant mentioned in the Introduction; it can be viewed as the U(1) gauge

coupling constant because it follows from (2.11) that the vector coupling constant is really ggI and we have

set gI = (1, 0).
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2.5 Relation to fake (pseudo)supergravity

For the models discussed in the previous section, the potential V (z, z̄) actually depends

only on |z|. This suggests that we write

z = ρ(σ)eiφ , ρ(σ) = tanh (σ/2) , (2.41)

for real fields σ and φ. In terms of these new fields, the Lagrangian density is given by

e−1L =
1

2
R − 1

4

[

(∂σ)2 + sinh2 σ (∂φ)2
]

− V . (2.42)

Moreover, we have

W = cosh (σ/2) W ′ ≡ ∂σW =
1

2
sinh (σ/2) , (2.43)

and the potential is

V = 16g2

[

(

W ′
)2 − 3

4
W 2

]

= −4g2 (2 + cosh σ) . (2.44)

The dependence of V on W is precisely that of fake (pseudo)supergravity.

The supersymmetry preservation conditions (2.40) may be simplified by writing the

anti-chiral doublet of spinors ǫ as

ǫ =
1

2
(1 − γ5)χ , (2.45)

where χ is a doublet of spinors satisfying the reality condition3

χ∗ = Mχ . (2.46)

Passing to the new target space coordinates, we find that equations (2.40) become

0 =

[

Dµ +
1

2
iγ5Aµ + gWΓµτ1

]

χ

0 =
[

Γµ (∂µσ + iγ5 sinh σ ∂µφ) − 8gW ′τ1

]

χ , (2.47)

where

Aµ = sinh2 (σ/2) ∂µφ , (2.48)

and

Γµ = iγµγ5 , (2.49)

are alternative Dirac matrices4.

The first of equations (2.47) is the Killing spinor equation; note that the field φ enters

only through the Kähler connection Aµ, which is proportional to ∂µφ. For any config-

uration that depends on a single coordinate, such as the domain wall and cosmological

3This condition is consistent since MM∗ = 1 for both M = 1 and M = τ3.
4The matrices Γ0Γµ are real and symmetric, so one may choose Γ0 = iγ0γ5 as the charge conjugation

matrix in this representation, replacing the choice γ0 in the representation γµ.
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configurations of interest, the Kähler field strength (which is the pullback of the Kähler

2-form) will vanish. This means that the term involving φ in the Killing spinor equation

is irrelevant to the integrability conditions of this equation, which are the same as those of

the simpler equation

(Dµ + g ΓµWτ1)χ = 0 . (2.50)

This equation is precisely of the fake-supergravity form (1.2) with g = (g, 0, 0). For a

domain-wall or cosmology background of the type to be considered here, it is known [1, 8, 9]

that this Killing spinor equation implies that
[

Γµ∂µσ − 8g W ′ τ1

]

χ = 0 . (2.51)

This agrees with the second of equations (2.47) if and only if φ is constant, and it then

follows that Aµ vanishes, so that (pseudo)Killing spinors are in fact solutions of (2.50).

To summarize, we have shown that necessary and sufficient conditions for a domain

wall (cosmology) to be a supersymmetric solution of our (pseudo)supergravity model are

(i) that z have constant phase and (ii) that (2.50) admit a non-zero solution for χ.

3. Domain-wall/cosmology correspondence

The metric for a D = 4 flat domain-wall spacetime may be put in the standard form

ds2 = dr2 + e2A(r)ds2(Mink3) , (3.1)

where r represents distance in a direction perpendicular to the wall, so that the geometry is

determined by the function A(r), and Mink3 is the 3-dimensional Minkowski metric. The

generic isometries of this metric are those of the D = 3 Poincaré group, and to preserve

this symmetry we must take the scalar fields to depend only on r. Given a solution of this

form for a model with scalar field potential V , the DW/C correspondence states that the

same model but with scalar field potential −V has a cosmological solution with metric

ds2 = −dt2 + e2A(t)dl2(E3) (3.2)

and scalar fields that depend only on time, where E3 is a 3-dimensional Euclidean metric.

This is of standard FLRW form with A(t) being the logarithm of the scale factor.

We have seen that (pseudo)supersymmetric solutions of our model are such that the

complex field z has constant phase φ. The φ = 0 truncation of (2.42) is clearly consistent,

so we effectively have a model with a single scalar field σ. From the results of [9], we then

learn that (pseudo)supersymmetric domain walls (cosmologies) are such that (in current

notation and conventions)

Ȧ = ±2|g|W = ±2|g| cosh (σ/2) ,

σ̇ = ∓8|g|W ′ = ∓4|g| sinh (σ/2) , (3.3)

where W is the scalar superpotential appearing in (2.50)–(2.51), given by (2.43) for the

model in hand, and the overdot indicates differentiation with respect to the independent

variable, which is the distance variable r in the domain-wall case and the time variable t

in the cosmology case.
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3.1 Domain walls

As a check of equations (3.3) for the domain-wall case let us return to (2.47). The coupling

constant g is real, and we may assume it to be positive without loss of generality. If one

assumes5 that χ depends only on r then the projection of the first of eqs. (2.47) in any

direction parallel to the wall yields
(

Ȧ + 2gWΓ
)

χ = 0 , Γ ≡ Γrτ1 , (3.4)

where the first term comes from the spin connection; note that there is no contribution

from the Kähler connection because its only non-zero component is Ar (as a consequence

of the fact that z is a function only of r). Writing χ as the sum of eigenspinors of Γ,

χ = χ+ + χ− , Γχ± = ±χ± , (3.5)

we see that
(

Ȧ + 2gW
)

χ+ +
(

Ȧ − 2gW
)

χ− = 0 . (3.6)

Acting on this equation with Γ yields
(

Ȧ + 2gW
)

χ+ −
(

Ȧ − 2gW
)

χ− = 0 , (3.7)

and hence
(

Ȧ ± 2gW
)

χ± = 0 , (3.8)

for either choice of sign. Given gW 6= 0 and χ 6= 0, it follows that

Ȧ = ±2gW , χ = χ∓ , (3.9)

for either the top sign or the bottom sign. Given this restriction on χ, the second of

equations (2.47) in a domain-wall background becomes

(

σ̇ + iγ5 sinh σ φ̇ ± 8gW ′
)

χ∓ = 0 . (3.10)

Multiplying this equation by Γ and using the fact that Γ anticommutes with γ5, we get the

equation
(

σ̇ − iγ5 sinh σ φ̇ ± 8gW ′
)

χ∓ = 0 , (3.11)

and hence we deduce that

φ̇ = 0 , σ̇ = ∓8gW ′ . (3.12)

We have now confirmed both that φ̇ = 0 and the first-order equations (3.3).

Returning now to the Killing spinor equation, we note that Ar = 0 for φ̇ = 0, so the

component of this equation perpendicular to the wall is simply

χ̇∓ = ±gWχ∓ . (3.13)

5This assumption is valid generically, but for the special case of the adS vacuum there will be additional

Killing spinors for which this assumption is not valid; their existence ensures that all supersymmetries are

preserved in this adS vacuum.
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It follows that the Killing spinors take the form

χ = eA/2ξ∓ , Γ ξ∓ = ∓ξ∓ , (3.14)

for constant real spinor ξ∓. Note that because Γ is real, the reality of ξ∓ is consistent with

it being an eigenspinor of Γ.

For the top (bottom) sign in (3.3) there is a solution only for r > 0 (r < 0). Let us

choose the top sign, corresponding to r > 0. Positivity of |z| ≡ ρ requires σ > 0, and the

solution compatible with this requirement is

σ = 2 log coth (gr) , (3.15)

and hence

ρ ≡ tanh (σ/2) = sech (2gr) , cosh (σ/2) = coth (2gr) . (3.16)

The equation for A (again for the top sign) is now easily solved, and the solution is

A = log sinh (2gr) . (3.17)

The domain wall metric is therefore

ds2 = dr2 + sinh2 (2gr) ds2(Mink3) . (3.18)

This metric is singular at r = 0 but is asymptotic to adS as r → ∞. We therefore have

a solution that is defined for r > 0 and is asymptotic to the adS vacuum with σ ≡ 0 as

r → ∞. The Killing spinors for this solution are

χ = [sinh (2gr)]
1

2 ξ− , τ1Γr ξ− = −ξ− , (3.19)

which shows that the domain-wall solution is half-supersymmetric. As noted earlier, our

model is an N = 2 truncation of SO(8) gauged N = 8 supergravity, and any solution can

be lifted to a solution of 11-dimensional supergravity. The domain wall solution found here

can be shown to be equivalent to one found in [27], where the lift to D = 11 was interpreted

as a continuous distribution of M2-branes.

3.2 Cosmologies

As observed in [9], we may interpret the first-order equations (3.3) as equations determining

a pseudo-supersymmetric cosmology; in this case g is imaginary and we may choose

g = i|g| . (3.20)

The cosmological counterpart of (3.4) is then found to be

(

Ȧ + 2|g|W Γ̃
)

χ = 0 , Γ̃ = iΓ0τ1 . (3.21)

If we now write χ = χ+ + χ− as in the domain-wall case, but now with Γ̃χ± = ±χ± then

we find as before that

Ȧ = ±2|g|W , χ = χ∓ . (3.22)
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The ‘photino equation’ then leads, as before, to

φ̇ = 0 , σ̇ = ∓8|g|W ′ . (3.23)

We have now confirmed both that φ̇ = 0 and (3.3) for the cosmology case. The associated

pseudo-Killing spinors are given by

χ = eA/2ξ∓ , Γ̃ ξ∓ = ∓ξ∓ . (3.24)

Although Γ̃ is imaginary, it anticommutes with τ3, so the projection onto an eigenspace of

Γ̃ is compatible with the twisted reality condition

ξ∗∓ = τ3 ξ∓ . (3.25)

Choosing the top sign in (3.3), which now corresponds to a cosmological solution with

t > 0, we find that the pseudo-supersymmetric solution has

σ = 2 log coth (|g|t) , (3.26)

and a metric

ds2 = −dt2 + sinh2 (2|g|t) dl2(E3) . (3.27)

There is a big bang singularity at t = 0 after which we have an expanding universe that

approaches the pseudo-supersymmetric dS vacuum as t → ∞. The (time-dependent)

pseudo-Killing spinors for this solution are

χ(t) = [sinh (2|g|t)]
1

2 ξ− , iΓ0τ1 ξ− = −ξ− , (3.28)

where ξ− is a constant spinor subject to the twisted reality condition (3.25).

Just as our ‘standard’ supergravity model was the N = 2 truncation of an S7 compact-

ification of D = 11 supergravity, our pseudo-supergravity model is an N = 2 truncation of

an adS7 ‘compactification’ of the (two-time) M*-theory [30]. It follows that the cosmologi-

cal solution lifts to a (presumably supersymmetric) solution of M∗-theory, and it is possible

that its big bang singularity could be resolved in this context.

4. Discussion

As originally conceived, pseudo-supersymmetry [9, 11] was merely a property of certain

cosmological solutions, unrelated to any symmetry. In view of the results of this paper

we should perhaps refer to this original concept as ‘fake’ pseudo-supersymmetry, because

we have seen that it is possible to view it as arising, in special cases, as a consequence of

a local ‘supersymmetry’ of an underlying ‘pseudo-supergravity’ theory in much the same

way as ‘fake supersymmetry’ arises (again in special cases) as a consequence of the local

supersymmetry of some supergravity theory. Pseudo-supergravity theories have vector

ghosts, and are therefore non-unitary, but their existence is still a non-trivial mathematical

fact, and the ghost sector plays no role in our analysis.
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The concept of pseudo-supersymmetric cosmology arose from an application to fake

supergravity of the domain-wall/cosmology (DW/C) correspondence, which relates domain

wall solutions of a model with a scalar potential V to cosmological solutions of the same

model but with scalar potential −V [9, 12]. As a consequence one may view a given model

with potential V as the ‘dual’ of the same model with potential −V . This extension of

the correspondence from solutions to models is trivial in the ‘fake’ setting but non-trivial

in the supergravity setting. We have shown that a particular U(1) gauged N = 2, D = 4

Maxwell-Einstein supergravity with an adS vacuum has a ‘dual’ pseudo-supergravity theory

with a dS vacuum, found by imposing ‘twisted reality’ conditions on the fermions. The two

models are dual in the sense that not only are the bosonic truncations the same up to the

flip of sign of the scalar potential, but also in the sense that a supersymmetric domain wall

of the standard supergravity theory is dual, in the sense of the DW/C correspondence, to

a supersymmetric cosmology of the pseudo-supergravity theory. The (a)dS vacua of these

theories are special cases of this correspondence, with enhanced supersymmetry in both

cases.

One motivation for this work was to understand the implications of pseudo-

supersymmetry. One such implication was recently presented in [31], where it was shown

that scaling solutions that are pseudo-supersymmetric must describe geodesic curves in tar-

get space. Another possible implication concerns stability in de Sitter space: the DW/C

correspondence maps the well-known Breitenlohner-Freedman (BF) stability bound on

scalar field masses in adS space to an upper bound on scalar field masses in dS space,

such that dS vacua can be pseudo-supersymmetric only if all scalar field masses satisfy the

bound [11]. It may be verified that this ‘cosmological’ bound is satisfied by the super-

symmetric dS vacuum of the pseudo-supergravity theories considered here; this is just a

consequence of the fact that the BF bound is satisfied by the supersymmetric adS vacuum

of the ‘standard’ theory. An obvious question is whether the cosmological version of the

BF bound may also be viewed as a stability bound. In this context we note that results of a

recent article [32] suggest that particles with masses above the bound are indeed unstable,

although FLRW spacetimes are known to be classically stable for any mass; see [33] for

recent rigorous analysis of this issue. In any case, the cosmological bound has a simple

group theoretic meaning when phrased in terms of particles created by scalar fields, where a

‘particle’ in dS space is identified with a unitary irreducible representation (UIR) of the de

Sitter group. These UIRs are classified into principal, complementary and discrete series.

Particles with mass above the bound correspond to the principal series while particles with

positive mass below the bound correspond to the complementary series. It is a group the-

oretic fact that there are no unitary fermionic complementary series [34], so that particles

with a non-zero mass below the bound cannot be paired with fermions by any symmetry

acting on a positive-definite Hilbert space. This shows that if pseudo-supersymmetry is to

be realized as a symmetry of a dS vacuum then the Hilbert space on which this symmetry

acts must be indefinite, as indeed it is for the dS vacua of pseudo-supergravity theories

because of the vector ghosts.

Normal supersymmetry has been instrumental in many recent advances by provid-

ing a means of obtaining otherwise inaccessible exact results, and pseudo-supersymmetry
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could play a similarly important role in cosmology, e.g. in the context of a dS/CFT cor-

respondence. Our realization of the DW/C correspondence in supergravity shows that

pseudo-supersymmetry is not an ‘accidental’ property of cosmology but one that is related

to a genuine, and mathematically non-trivial, symmetry.
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